1. Effct of this experiment

You will realize

Planetary mass

Universal G force

Planetary revolution radius

Planetary orbital period

2. Preparation

Change the actual value to a value suitable for the experiment

	$ ext{mass}(imes 10^{21} ext{kg})$	Revolition radius(×10⁴km)	Universal gravitation (N)
Mercury	330.2	5790	9.85 × 10 ⁷ GM
Venus	4868.5	10800	4.17 × 10 ⁸ GM
PlanetX	2986.8	12880	1.80×108GM
Earth	5973.6	14960	2.67 × 108 GM
Mars	641.85	22790	1.24 × 10 ⁷ GM

	mass(g)	Revolition radius(m)	Universal gravitation(gw)
Mercury	5.53	0.174	99.1
Venus	81.5	0.325	422
PlanetX	50	0.388	182
Earth	100	0.45	270
Mars	10.7	0.685	12.5

G;Gravitational constant M;mass of the sun

3. Experimental method

Fig.1 Experiment

1. Have a glass tube

- 2. Do not touch threads or weights
- 3. Spin above the head
- 4. Spin fast enough so that the black mark stabilizes at the top of the glass tube
- 5. Measure the time of 10 revolutions

Black mark

It comes out when you turn it quickly
It sinks when turned slowly

4. Planet type

PlanetX

Mercury

Venus

Mars

5. Processing

1. Work out the average of the period data (T) for each planet

Earth

- 2. Record the period data(T) in Excel
- 3. Make a scatter plot of the relationship between the T^2 and the r^3 (cube of the radius) of revolution.

6. Hope

I hope you will get the results shown in the figure.

Enjoy the experiment.

